State-to-state rotational transitions in H2+H2 collisions at low temperatures.

نویسندگان

  • Teck-Ghee Lee
  • N Balakrishnan
  • R C Forrey
  • P C Stancil
  • D R Schultz
  • Gary J Ferland
چکیده

We present quantum mechanical close-coupling calculations of collisions between two hydrogen molecules over a wide range of energies, extending from the ultracold limit to the superthermal region. The two most recently published potential energy surfaces for the H(2)-H(2) complex, the so-called Diep-Johnson (DJ) [J. Chem. Phys. 112, 4465 (2000); 113, 3480 (2000)] and Boothroyd-Martin-Keogh-Peterson (BMKP) [J. Chem. Phys. 116, 666 (2002)] surfaces, are quantitatively evaluated and compared through the investigation of rotational transitions in H(2)+H(2) collisions within rigid rotor approximation. The BMKP surface is expected to be an improvement, approaching chemical accuracy, over all conformations of the potential energy surface compared to previous calculations of H(2)-H(2) interaction. We found significant differences in rotational excitation/deexcitation cross sections computed on the two surfaces in collisions between two para-H(2) molecules. The discrepancy persists over a large range of energies from the ultracold regime to thermal energies and occurs for several low-lying initial rotational levels. Good agreement is found with experiment B. Mate et al., [J. Chem. Phys. 122, 064313 (2005)] for the lowest rotational excitation process, but only with the use of the DJ potential. Rate coefficients computed with the BMKP potential are an order of magnitude smaller.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

State resolved rotational excitation cross sections and rates in H2+H2 collisions

Rotational transitions in molecular hydrogen collisions are computed. The two most recently developed potential energy surfaces for the H2−H2 system are used from the following works: 1) A.I. Boothroyd, P.G. Martin, W.J. Keogh, M.J. Peterson, J. Chem. Phys., 116 (2002) 666, and 2) P. Diep, J.K. Johnson, J. Chem. Phys., 113 (2000) 3480; ibid. 112, 4465. Cross sections for rotational transitions ...

متن کامل

Spin-orbit relaxation of Cl(2P1/2) and F(2P1/2) in a gas of H2.

The authors present quantum scattering calculations of rate coefficients for the spin-orbit relaxation of F(2P1/2) atoms in a gas of H2 molecules and Cl(2P1/2) atoms in a gas of H2 and D2 molecules. Their calculation of the thermally averaged rate coefficient for the electronic relaxation of chlorine in H2 agrees very well with an experimental measurement at room temperature. It is found that t...

متن کامل

Quantum dynamics of rovibrational transitions in H2-H2 collisions: internal energy and rotational angular momentum conservation effects.

We present a full dimensional quantum mechanical treatment of collisions between two H(2) molecules over a wide range of energies. Elastic and state-to-state inelastic cross sections for ortho-H(2) + para-H(2) and ortho-H(2) + ortho-H(2) collisions have been computed for different initial rovibrational levels of the molecules. For rovibrationally excited molecules, it has been found that state-...

متن کامل

State-resolved rotational cross sections and thermal rate coefficients for ortho-/para-H2+HD at low temperatures and HD+HD elastic scattering

This paper is a continuation of our previous work on close-coupling calculations of rotational energy transfer in para-H2+HD [ 1]. Now we report, primarily for ortho-H2+HD, new results for the integral cross sections and corresponding thermal rate coefficients. As in the previous paper, we apply a recently developed global H2-H2 potential energy surface from the work of A.I. Boothroyd, P.G. Mar...

متن کامل

Rotational relaxation in molecular hydrogen and deuterium: theory versus acoustic experiments.

An explicit formulation of the rotational relaxation time in terms of state-to-state rate coefficients associated to inelastic collisions is reported. The state-to-state rates needed for the detailed interpretation of relaxation in H2 and D2, including isotopic variant mixtures, have been calculated by solving the close-coupling Schrödinger equations using the H2-H2 potential energy surface by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 125 11  شماره 

صفحات  -

تاریخ انتشار 2006